

ParaPET : Méthode de cartographie 3D des paramètres cinétiques de fixation du ¹⁸FDG en TEP

<u>E. Colard</u>¹, L. Padovani², S. Delcourt³, S. Thureau^{1,4}, B. Farman Ara³, P. Gouel⁵, I. Gardin^{1,5}, P. Vera^{1,5}, D. Taïeb^{3,6}, D. Barbolosi⁷, S. Hapdey^{1,5}

¹QuantIF, LITIS EA 4108, Université de Rouen ²Radiothérapie, CHU La Timone, Marseille ³Médecine Nucléaire, CHU La Timone, Marseille ⁴Radiothérapie, Centre Henri Becquerel, Rouen ⁵Médecine Nucléaire, Centre Henri Becquerel, Rouen ⁶Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille ⁷SMARTc, INSERM, UMR CR02, Université Aix-Marseille

18 Mai 2017

 Cinétique du FDG
 SUV
 Quantification
 ParaPET
 Perspectives

 Objectif

Extraire des paramètres pharmaco-cinétiques quantitatifs à l'échelle du voxel, à des fins de diagnostic et d'évaluation de la réponse au traitement chez des patients atteints de CBNPC

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives
••	0	00000	000000000	0
Cinó	tique du 18ED	2		

Cinétique du ¹⁸FDG

- Modèle à 3 compartiments pour l'étude de la cinétique du ¹⁸FDG (Sokoloff) :
 - k1 et k2 : constantes d'échange du ¹⁸FDG entre plasma et tissu
 - k3 : phosphorylation du ¹⁸FDG en ¹⁸FDG 6 PO₄

- Quantification normalisée à partir d'une image TEP statique acquise 60 min post-injection
- Mesure de la fixation **globale** du ¹⁸FDG
- Multiples sources de biais et variabilité :
 - Délai post-injection, paramètres d'acquisition et de reconstructions, ROI de mesure

> Variation du SUV de l'ordre de 20% à 50% [Weber, JNM-2015]

Weber, W.A., Gatsonis, C.A., Mozley, P.D., et al. J. Nucl. Med. 56, 1137–1143 (2015)

• Résolution du modèle : $C_{FDG}(t) = K_i \int_0^t C_p(\tau) d\tau + V_p C_p(t)$

Avec K_i : débit net entrant de ¹⁸FDG dans la tumeur où $K_i = (k_1 \cdot k_2)/(k_2 + k_3)$ V_p : fraction de volume plasmatique dans la région d'intérêt

Données nécessaires :

- **C**_{FDG}(t) -> acquisition TEP dynamique de 60 min depuis l'injection du ¹⁸FDG
- C_p(t) -> prélèvements sanguins le long de l'acquisition

- Existence de méthodes de quantification plus élaborées permettant d'accéder à la fraction de ¹⁸FDG réellement métabolisée.
- Analyse graphique de Patlak : le « Gold Standard »

$$\frac{C_{FDG}(t)}{C_p(t)} = K_i \frac{\int_0^t C_p(\tau) d\tau}{C_p(t)} + V_p$$

- Existence de méthodes de quantification plus élaborées permettant d'accéder à la fraction de ¹⁸FDG réellement métabolisée.
- Analyse graphique de Patlak : le « Gold Standard »

$$\frac{C_{FDG}(t)}{C_p(t)} = K_i \frac{\int_0^t C_p(\tau) d\tau}{C_p(t)} + V_p$$

• Limites :

- Acquisition TEP dynamique de 45 min (soit 30 min entre le début de l'injection du ¹⁸F-FDG + 5 acquisitions tardives de 3 min)
- 5 prélèvements veineux associés aux acquisitions tardives pour ajuster l'amplitude de la courbe C_p(t)

Patlak, C.S., Blasberg, R.G. J. Cereb. blood flow Metab. 5, 584–590 (1985)

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives
00	Ο	00000	000000000	0
	•		1	

- <u>Approche statistique de Barbolosi</u> [MBEC 2016] intégrant une modélisation de l'erreur de mesure des données
 - > Estimation de $[K_i, V_p]$ en minimisant la fonction

$$f(x, y) = \sum_{k} \left[x \int_{0}^{t_{k}} C_{p}(\tau) d\tau + y C_{p}(t_{k}) - C_{FDG}(t_{k}) \right]^{2}$$

Variabilité des mesures d'activité sanguine $C_p(t_k) = C_p(t_k) + \mathcal{E}_p$ Détermination à partir de multiples comptages des prélèvements sanguins

Variabilité des mesures d'activité des images TEP

$$C_{FDG}(t_k) = C_{FDG}(t_k) + \mathcal{E}_{FDG, t_k}$$

Mesure réalisée au point d'activité maximale de la
tumeur

Barbolosi, D., Hapdey, S., Battini, S., et al. Med. Biol. Eng. Comput. 54, 103–111 (2016).

Cinétique du FDG	SUV o		Quantification	ParaPET 0000000000	Perspectives o
1	•	1	N A / 1 I		

- Approche statistique de Barbolosi [MBEC 2016] intégrant une modélisation de l'erreur de mesure des données
 - > Estimation de $[K_i, V_p]$ en minimisant la fonction

$$f(x, y) = \sum_{k} \left[x \int_{0}^{t_{k}} C_{p}(\tau) d\tau + y C_{p}(t_{k}) - C_{FDG}(t_{k}) \right]^{2}$$

Avantage :

> 4 acquisitions tardives de 3 minutes + 4 prlvmts sanguins

Limite :

> Un seul couple de paramètres [K_i, V_p] pour toute la tumeur

Barbolosi, D., Hapdey, S., Battini, S., et al. Med. Biol. Eng. Comput. 54, 103–111 (2016).

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives o
ParaPET				

- Méthode ParaPET basée sur les développements de [Barbolosi MBEC 2016]
- Améliorations proposées :
 - Nouveau modèle d'estimation des erreurs de mesure $CFDG(t_k)$ utilisant un protocole de reconstructions multiples
 - > Génération de 5 images (de 3 minutes) de $C_{FDG}(t_k)$ et de 5 images de l'erreur associée

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives o
ParaPET				

- Méthode ParaPET basée sur les développements de [Barbolosi MBEC 2016]
- Améliorations proposées :
 - Nouveau modèle d'estimation des erreurs de mesure CFDG(tk) utilisant un protocole de reconstructions multiples
 - > Génération de 5 images (de 3 minutes) de $CFDG(t_k)$ et de 5 images de l'erreur associée
 - > Résolution statistique de la fonction *f(x,y)* à l'échelle du voxel

-----> Cartographie 3D des paramètres cinétiques de la lésion étudiée

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives o
ParaPET				

- Méthode ParaPET basée sur les développements de [Barbolosi MBEC 2016]
- Améliorations proposées :
 - Nouveau modèle d'estimation des erreurs de mesure CFDG(tk) utilisant un protocole de reconstructions multiples
 - > Génération de 5 images (de 3 minutes) de CFDG(tk) et de 5 images de l'erreur associée
 - Résolution statistique de la fonction f(x,y) à l'échelle du voxel
 - Cartographie 3D des paramètres cinétiques de la lésion étudiée
 - Détermination de $C_p(t_k)$ à partir des images TEP centrées sur l'aorte (pour s'affranchir des prélèvements sanguins) et de l'erreur associée ε_p

Cinétique du Fl	DG	SUV		Quantification		ParaPET	Perspectives
00		0		00000		000000000	0
	DET		1	1771	1		

ParaPET : Schéma de l'étude clinique

- Essai non randomisé bicentrique ParaPET (NCT 02821936)
- Objectif principal : Evaluer l'intérêt de l'imagerie ParaPET pour le pronostic précoce de récidive à 1 an, chez des patients atteints de CBNPC traités par radio-chimiothérapie.
- Informations générales :
 - 40 inclusions prévues (30 initialement)
 - Durée des inclusions : 1 an (débuté en 07/2016) prolongée à 2 ans
 - Suivi des patients : 1 an
- Autorisations :
 - Etude préliminaire : Accords CPP et ANSM reçus le 5/11/2015 et le 03/12/2015 respectivement
 - Etude ancillaire : Amendement accepté le 01/02/2016 par le CPP et le 05/02/2016 par l'ANSM.

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives
00	Ο	00000	0000000000	0

ParaPET : Schéma de l'étude clinique

- Critères d'inclusion :
 - Age supérieur à 18 ans
 - CBNPC histologiquement prouvé
 - Tumeur de stade ≥ Ila
 - Patients relevant d'un traitement à visée curative par RCT concomitante ou séquentielle à base de sels de platine
 - TEP₀ au FDG positive

ParaPET : Résultats Préliminaires

• 20 patients inclus (60 % hommes)

dont 2 exclusions après TEP₀ et 1 inclusion à tort (aucun TEP)

- 11 patients ayant bénéficié d'un TEP 42 Gy (-> 30 examens au total)
- Âge moyen : 62,5 ± 8,1 ans
- Histologie : 47% ADK ; 37% CE ; 11% C peu différencié ; 5% C malpighien
- Localisation tumeur primitive :
 - droite 74% (sup 42%, moyen 26%, inf 5%)
 - gauche 26% (sup 21%, inf 5%)
- Taux d'échecs des prélèvements sanguins :
 - 40% sans prélèvements/inexploitables;
 - 10% avec 1-3 prélèvements;
 - 50% ≥ 4 prélèvements
- Problème d'imagerie pour 7/30 examens (23%)

ParaPET : Résultats Préliminaires

Exemple d'images TEP standard (a et b) et des paramètres K_i (c), V_p (d) et T80 (e) (paramètre d'intérêt proposé par Barbolosi et al.) générées par la méthode ParaPET

Au voxel d'intensité max : Ki = 0,0436 min⁻¹

Vp = 0,302

T80 = 1,2 min

Au voxel d'intensité max : Ki = 0,0712 min⁻¹

Vp = 0,949

T80 = 15,8 min

Cinétique du FDG SUV Quantification ParaPET Perspectives

ParaPET : Résultats Préliminaires

- 8 examens traités => 16 lésions
- Comparaison du paramètre K_{i-ParaPET} et K_{i-Barbolosi} (avec ou sans prélèvements) vs. K_{i-Patlak} (la référence)

Erreur vs Patlak	Erreur moyenne (%) ± SD	Coeff. de corrélation de Spearman
ParaPET	- 0,2 ± 10,2 %	0,991
Barbolosi	- 4,9 ± 9,8 %	0,974
Barbolosi sans prlvmts	- 1,3 ± 15,5 %	0,953

- ParaPET : biais systématique le plus faible (biais_{moyen} < 10⁻³) avec intervalle de confiance à 95 % [-6.10⁻³; 8.10⁻³ min⁻¹]
- Résultats K_{i-ParaPET} vs K_{i-Patlak} non statistiquement différents

Cinétique du FDG	SUV	Quantification	ParaPET	Perspectives
00	Ο	00000	000000000	
Conclu	cione ot De	reportivos		

Conclusions et Perspectives

 Proposition d'une nouvelle approche pour l'obtention d'images 3D des paramètres cinétiques de captation du ¹⁸FDG

Une acquisition TEP dynamique de durée limitée (15 minutes), sans prélèvements veineux.

-----> Facilement implémentable en routine clinique

• Perspectives et Améliorations :

- Répondre aux questions cliniques du protocole :
 - Intérêt pronostique sur la récidive à 1 an
 - Intérêt de l'imagerie per-thérapeutique pour la détection de récidive locale
- Optimisation du temps de calcul
- Automatisation de la détermination de Cp(t)

Merci pour votre attention